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We shall consider the following problem of successive minimization, or, as
one calls it, multistage minimization problem. Let the functions f;(z),..., fp(2),
g1(z),...,9.,(z) are defined on some set X,. At the first step we solve the mini-
mization problem on the set X;., where

Xu.={ZEXu:gj(zj£U, U SRR gﬂ:]:ﬂ, j=m+1,,,,,3};&gi'(1}

and find
fl- - ftl:r fl(z); Xl- - - {2 € -Yﬂ- :fl{I) s f'l-}' (21)

Suppose that fi. > —00, X« # @. If at some (k—1)-th step (k 2 2), fr—1. > —o0,
Xi_i. # @ are already known, we then find

fia = inf fi(z);  Xiw ={z € Xiora: fi(2) = [} (2)

k=1l=

e.t.c. At the end, at the last step, we find

fpe = inf fp(I)I XF. ={z € Xp_1.: fpl2) = fp_}, (2,)

The formulated p-stage minimization problem (1), (2), in which we look for
f»« and at least onepoint z,, € X,., appears in the game theory and in operajions
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research [1-8] As an example of the two-stage minimization problem we can take
the problem of normal solution of the ordinary minimization problem.

Let us suppose that instead of the exact fi(z), g;(z), we known only theu
approximation fis(z), gjs(z), such that

A(6,2) = max{ max |fus(z) = file)|: max lgja(x) = gs()}

z€ Xy, 62>0

converges to zero. We can try then to replace the initial data f;(z), g;(z)in (1), (2)
with their approximations fi5(z), g;s(z) and by analogy with (2, )-(2, ), successively
determine fis. and the sets X;;., and take them as the approximations for f;. and
Xio, k= 1,2,...,p. However, this approach that looks so natural, in general
case can lead to a big error for very little errors in the initial data, because, as
simple examples [5] show, problem (1), (2), generally speaking, is unstable relative
to perturbations of the functions f;(z), gj(z). For this reason, for solving this
problem it is necessary to apply some regularization method (3, 9-12]. In what
follows, we will describe and investigate one of this methods-method of discrepancy.

Let us suppose that X, is a subset of some metric space M with metric plu, v)
and that there exists p-stabilizer Q(z). Let us remind [9, 10] that the function
fU(z) is called a p-stabilizer if (z) > 0 for all z € X, and the set Xy(c) = {z €
Xo: Q(z) < ¢} is precompact for all ¢ € R, 1.e. for every sequence (z;) from Xq(c)
there exists a subsequence (z;_) that p-converges to a certain point of M. Let us
assume that Xo. # @, fra > —o0, X # @ for all k = 1,2,... ,p and that the
errors (3) of the approximations fy5(z), gjs(z) are such that

A6, z) < 6(1 + (=), z€ X, 6>0. (4)
Let
Wou(8) = {2 € Xo : g(2) S 51 +0(2)), j=1,... s},
where z.;»*' = max{0,2;} for j = 1,... ,m, and z;' = |z;|] for j =m+1,...,s

Note that by (3) and (4), Xo. C W5.(8) # @ for all § > 0. At each step of the
discrepancy method, one must solve two minimization problems. At the first step
one should approximately solve the problem.:

fis(z)+ 0,8(z) — inf, z € Wpa(d), 8, =6,(8) >0

and determine f,.(8) = infw,, 5|fis(z) + 0:Q(z)] with the precision uy; = u,(8)
Then one introduces the set Vi(8) = {z € Wo.(8) : fia(z) € fi(8) + 4y}, solves
the minimization problem z) — inf, z € V4 (§), finds O,.(8) = iy, s 2z), with
the precision £, = £,(8) > 0, and, by the same token, determines the set

Wi(8) = {z € Vi (§) : Uz) < M (8) + 5} (5]

Let W,.(8) ¥ @. Let us suppose that for certain k > 2: Wi_,.(8) # @. Then.
solving the problem fis(z) + 0¢fz) — Inf, z € Wioi.(8), 8¢ = B, (8) > 0. we
determine fio(8) = infy,_ ) {fes(2) +0:80(2)} with the precision pug = pe(8) > 0
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and the set Vi(8) = {2 € Wi_1.(8) : frs(z) € fia(8) + ur). Next, solving the
problem Q(z) — inf, z € Vi(8), we find Q4.(8) = infy, (5) Qz) with the precision
€ = £4(8) > 0 and put

Wea(8) = {z € Vi(8) : z) € Qua(8) + 4} (54)

This process is completed when the set W,.(§) is determined. For p = 1 the method
(5) turns into the known method of discrepancy for solving unstable minimization
problems [9-13]. In this paper, on the basis of the generalization of the method
from [13], we propose one rule for the choice of the parameters 6;(8), ui(5), =x(8),
that guarantees conditions fi.(8) > —oc, Vi(8) # @, Wi (8) # @, k = 1,... ,p,
prove the convergence of the method (5) and give the estimate of the convergence
rate.

THEOREM 1. Assume that the following conditions are satisfied:

1) The problem (1), (2) has a solution, t.e. Xg. # @, fre > —00, Xia(6) # @,
k=1,...,p, and, for each fized k, 1 < k < p, the mintmization problem

fe(z) — inf,
:E.Y;,.——-{:E.Yu:gj(z)ﬂﬂ. Jj=l...,m; gi(z)=0,)=m+1,...,s
filz) - fia £0, i=1,...  k=1} # 2. (6)

satisfies the condition of the strong consistence [14|: there ezist constants Ag; 2 0,
j = l'l"'"" I'S'.l‘ “‘kl‘ 2.01 l.= lgtr- 1k_ 11 Sﬂﬂh thﬂt

s k-1 :
fie < fi(2) + L Aejgf (2) + L primax{fi(z) — fia;0}, z€Xo. (7)
y=1 i=1

2) The set Xy 15 known ezactly, but, instead of the functions fi(z), g;(z), their
approzimations satisfying condition (4) are known.

3) The parameters 8, = 0.(8), pr = pe(d), =& = £x(8), are consistent wrth the
error & > 0, such that

(6) 2 8(1 +21Acly),  [Aeh = 2 Ay k=1,...,p, ~ (8)
=3
pe(8) > 802+ Q. +2I0el1) + O pei[(28 + 8;(8))0. + 28u;(8) + 8<4(8)], (9)
=]
k(8)> Ne = Nipu(8), k=1,...,p=1; Q.=:1rnfﬂ(:r}. (10)

Then fio > =00, Vi(8) # @, Wi(8) #F 0, k=1.....p—-1, and the following
estitmates are vahd

Qz) < Q.+ z(6), z € W.(0), (11)

max _"}'J'(I) < 28(1 + 0. + =:(8)), z € W..(8), (12}
1€;<s
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i=1
28| il (1 4 Q. + 2i(8)) = T wijB; € fi(z) = fio € Bi(8), =z € Wi.(8) (13)
)=1
where 3,(8) = (28 + 8;(8))N0. + 25 + ui(8) + b¢i(6), 1 =1,... ,p.
Assume that in addition to conditions 1)-3) the following condition is satisfied:
4) The set X, is p-closed, the functions fi(z),i=1,...,p, g/ (2), i =1,... .3,
are lower p-semicontinuous on Xy, Q(z) 1s p-stabilizer,

1 = 8) < . 1
Pnnl:s lmhu.x (0:(8) + pe(8)) =0, iu;ﬂ: 1:1'1:.1( £x(8) < +o0 (14)
Then
- S - -Y - B 15
‘hm s.:ﬂ) [fe(z) — fre| =0, ﬁrlu:u‘:1 s:.:ﬂ]p(:, te) = (15)

If together with 1)-4) the following condition holds:

5) Q(z) 1s lower p-semicontinuous on X, and

i — 16
lim e, (8) =0, (16)
then ;
li Q(z) -N.| =0, li u , Xpas) = 1aglT
Jm ::?“I (z) | Jim ;h?” p(z, Xpes) g

where Xpue = {2z € Xp. : Qz) = N.} is the set of the Q-normal solutions of the
problem (1), (2).

Note that the condition (7) is satisfied if Lagrange’s function of the problem
(6), (2) has a saddle point [14], and that A¢; and ui; in (7) can be taken to be
any estimates from above for the absolute values of Lagrange’s multipliers. These
estimates can be obtained using numerical methods for determining the saddle
points of the problem (6) [14, 15]. In addition, in applied problems, Lagrange’s
multipliers have often physical, economical or geometrical interpretation and their
estimates can be obtained from practice.

Proor. It follows from (3) and (4) that Xg. C Wy.(8) # @ and
97 (2) L g5(z) + 8(1 +Qz)) 261 +Q=z)), j=1,....3 (18)

From (7), taking into account (17), we have

k-1
fee < fi(z)+26(1 +Q(2)) - M1 + 2 i max{fi(z) = fi.: 0}, -
i=1 §

z € Wou(8), k=1,...,p.

Note also that
-Yp- g -YP—I,- g ‘. g -TD- _,c_ ‘Vuii

. =0}
f*('cpl] =f.k-- :p- E -IXP.I k = I. ~p. : n
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From (3), (4) and the inegualities (8), (19) for k = 1, it follows that

His(z) +0,2(z) 2 fi(z) - 8(1 + Qz)) + 8,Q(z2)
2 fr = 28A [ (1 + Q(2)) = 6(1 + Q(2)) + 6,2(z)
2 fie — 5(1 + 2':\1[1] > =00, for all z € Wg.(ﬁ].

Therefore,
fis(z) 2> fie = 801 + 2|\ 1) > —o0. (21)

From here, taking into account that Q(z) > 0, z € X,, we conclude that V;(§) # 2,
0.(8) 20, Wi.(8) # @ for all gy >0, &; > 0. Let us prove that V,(§) N X,. #0
for all § > 0. More precisely, let us show that Q.. = V;(§), where ;.. is the first
from the following sets:

Qpee = Qe (V) = {z € X,. : Qz) £ + v}, k=1,...,p~1. (22)
0 < v < min{A; B} (23)

where:

=1
A= [Bin, 5! (.u,- =82+ Q. +2|Ah) - jgl‘ijﬂf)

B = oo (€:(6) — Q. + Q4.(8))
Note that Q.. # @ for all v > 0 by definition of Q.. For all y € Q,.., taking into
account (4) and (20)-(23), we have

fis(y) € fie +6(1 + Q0 +v) € fra(8) +0(1 +2|M 1) + 61 4+ Qu + v) £ f1o + 1.

This means that y € V{(8). Hence, Q;. C V;(§) for all v from (23). Then 24.(8) <
Qy) < Q. + v for all y € Q;.. and setting v — 40 we obtain 2,.(§) < Q.. From
here and (5;) we also obtain the estimate (11) for t = 1. Then, from (18) it follows
(12) for i = 1. Furthermore, taking into account (4) and (11) for i = 1, we have

filz) € fis(z) +8(1 + Q(z)) < f1re(8) + 1 + 8(1 4+ Qu +&4)
< fis(y) +0,0y) +p1 +6(1 + Q. + )
Cf1a+8(1+Qe4+v)+8(Qa+v)+8(1 +0u+51) + g
for all z € W,.(8), y € Q...

From here, setting v — 0, we obtain the right hand side inequality (13). The left
hand side inequality (13) follows from (19) for £ = 1 and from the estimate (11)
for t = 1. Finally, for all y € Q.. € Vi(é), taking into account (22), (23), we have
Qy) €< 0. +v < o(d) + 2(8). This means that Q.. € W,y.(8). Suppoese that
for some k Z y A V;_I{ﬁj ?": a, Qt_l.{tﬂ 5 Q., ng-l.. f; lvt-l..(é) -F J. and that

estimates (11)-(13) fori=1....,k — 1 are obtained. Reasoning as in the proof of
the inequality (21) and taking into account the inductive assumption we obtain

k-1
fes(2) 2 fee = 8(1 + 3UNe)y) — X seiddi > —o0. (24)

J=1
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It follows from here that Vi(8) # @, Wi.(8) # @, for all uy > 0, e > 0. Further-
more, taking into account (4), (20), (22)-(24) and the inclusions Qe.. S i1 S
&-1(8), we have

k-1
fes(¥) € foe +6(1 + Q0 +v) £ fua(8) +6(1 + 2| Aefy) + Elp”ﬂ} +586(1+ 0 +v)
=

5 fk-(s) 3 “l(ﬁ)r for all y € Qk---

This means that Q;.. € Vi(8) for all v from (23). Then Q:.(8) < Qy) < Q. + ¥
for all y € Q4.., from where, setting v — 0, we obtain the inequality Q2..(8) < Q..
From here and from (5;), it follows the estimate (11) for + = k. Then, from (18),
it follows the estimate (12) for i = k. Furthermore, with the help of (4), (5¢), (20),
(22), (23), we have

fi(2) € fis(z) +6(1 + Q=) < feald) + s +8(1 + Q. + £¢)
< fes(y) +0:Qy) + pe +6(1 + Qu + )
< fia +6(1 +Qu + )+ 06(Qu + v) + pe + 6(1 + Q0 +54),

for all z € Wi.(8), y € Qe C Vi(8). From here, putting v — 0, we obtain the
right hand side inequality (13) for ¢+ = k. The left hand side inequality (13) 1s a
consequence of (19), the estimate (11) for ¢ = k and the right hand side inequalities
(13). Finally, for all-y € Q.. € Vi(8), taking into account (22), (23), we have
that Q(y) < Q. + 4 < N..(6) + £:(6). This means that Q.. € W, (8), for k < p.
This completes the inductive reasonings. It follows that f;.(6) > —oc, Vi(8) # @,
W;.(8) # @, and that the estimates (11)-(13) hold for1 =1,... .p.

The first equality (15) follows from (13), (14). This means that when the
conditions 1)-3) and (14) of Theorem 1 are satisfied, the method (5) converges with
respect to function values. Let us prove the second equality (15) which means the
convergence of the method with respect to the argument, supposing the conditions
1)-4) of the theorem. To this end, fix any number k, 1 € k < p and denote
Yi(8) = sup p(z, Xi.). Let (&) be a sequence such that & > 0,1 =1,2,..., and
8t — 0. Then, for every | € N, there exists z; € Wy.(8,) such that

Ve(ér) = 1/1 < p(z1, Xia), P32, (25)

Note that z; € Xo(ce) = {z € Xo : Qz) < e = Ou + supgyoce(d)} for all
| € N. The set X(c;) is p-compact and the set X; is closed. so that (choosing a
subsequence if it is necessary) we can assume that the sequence (z;) converges to
z. € Xy. Taking into account that the functions g;j(z), ; = 1.... 5. are lower
p-semicontinuous, one can conclude that z. € Xy.. The function f,(z) 1s lower ;-
semicontinuous too, so that, using (13), we obtain: fi. < fi(z.) < lim fi(21) = fi..
Le. filz,) = fi., 2. € Xi.. In the same way we can derive that fi(z.) = f...
Zoe € Xouy ..oy Ji(2e) = fie, 2. € Xio. Hence, limp(21, Xio) = p(2.. Xid) = 0.
Therefore, from (25) we have that lim v (8;) = 0. which implies the second equality
m (15), fork=1,...,p.
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Finally, assume that all conditions 1)~5) of Theorem | are satisfied. Consider

again a sequence (&) such that § — 0 and § > 0. Then there exists a sequence
(£7) so that

sup  [Q(z) - Q.| = 1/1 < Q=) - ., l=12,... (26)
TEW, . (§)

Since z; € Xo(cp), | € N, one can assume that (z;) converges to z. € X,. Using
that the function (z) is lower p-semicontinuous, in the similar way as above one
can derive that (z.) = (2.. This means that z, € X,... The first equality in (17)
follows from here. The second equality in (17) can be proved in the similar way.

REMARK 1. One can have the impression that in the application of the method
(5), it is necessary, together with fi.(8), 2:.(8) to determine all the sets W, (§).
That is not true. In fact, it is enough to find the approximations fi.(8) + ui(8),
k=1,...,p, Qu(8)+€e(8), k=1,...,p—1, and, on the last p-th step solve one
minimization problem:

Uz) — inf,
z€V(8)={z € Xo:g}y(2) S 51 +9(z)), j=1,...,5
fié(2) < fia®) + mil6), i=1,... ,p;
Uz) < min_ (.(8) +(6) } (27)

1<r<p—1
using any suitable method for this purpose (see for ex. [14, 15]. It is enough to
solve the problem (27) approximately with the precision ¢, = £,(8) > 0. Namely,
it is satisfactory to find a point z = z,(§) so that

zp(8) € Vp(8),  Qzp(8)) £ Q2u(8) + &5 (6). (28)
If the conditions 1)-4) of Theorem 1 are satisfied, we have that
Jim foi(2p(6) = fyuy  Jim_ p(z,(6), X,u) = 0. (29)

and in case when all conditions 1)-3) are satisfied we also have that

Jim Qszp(8) = Qe lim p(2p(6), Xpea) = 0. (30)

This means that z [:n, and fos(zp (8)) can be taken as approximations of the solu-
tions of the pmblem (1), (2). The eqiialities (29), (30) also mean that the operator
R;s which to input data (f:;(z), g;5(z),8) corresponds 2 point z,(8), is regulariz-
ing [9].

The following theorem gives an estimate of the rate of convergence of the
method (5) with respect to the argument. |

THEOREM 2. Assume that the conditions 1)-3) of Theorem 1 an salisfied and Ya
15 a closed conver subset of a Banach space B; the functions g *(z),5=1,.
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fi(z),... ,fei-1(2), | < k £ p, are convexr on Xy, the function fi(z) 15 strictly

uniform convez on Xo with the coefficrents of the converity wy(t) [14]. Then X;. =
Xiste=...= Ko = {z4.} and

k
2 = zaall < Wt (26106l (1 + Q. +24(6) + T (wuil2601 +2.)

1=1

+6,(0)0 + w6 +66()]),  zeWnl®), O

where u[‘({) is the inverse function of the function £ = wi(l), pae = 1.

If all functions fi(z),..., fp(z) are only convez on Xo, the function z)
is strictly uniform convez on X, with the coefficient of converity w(t) and if the

problem

(U(z) — inf,
z€Xp={z€Xp:9j(2) <0, j=1,...,m; gj(z)=0, j=m+]l,....%
fi(:)-fi- Sos 1= , WS :P}t

satisfies the condition of the strong consisience of the type (7), then the set X,.
conststs of the unigue point z,. and

2 = 2|l < w™ (28|25 ]1(1 + Q. + £,(5))) + €5 (8)

+ i(p;[%(l + Q.) + 6;(6)0. + p(b) + 8¢i(8))), z € Wy.(8). (32)

1=1

Proor. It follows from the conditions of the theorem that the sets Xg.,..., X,.
are convex and nonempty and that the set X .. consists of the unique point {z:.}.
Then Xie = Xi41s = ... = Xpa = {24+ }. The function

: k-
Gi(z) = filz) + L Mijg] (2) + Elmu' max{fi(z) — fi«; 0}, z € Xo

y=1 =1

is strictly uniform convex on X, with the same coefficient of the convexity wi(t) as
the function fi(z). In addition, Gi(z) 2 Gi(zi.) = f(zhe) = fi. for all z € X,.
This means that the function Gi(z) achieves minimum at the point z;. Then, [14],

for z € Xy, we have

w(llz = 2eafl) € Grl(z) = Ge(zra)

» T |
= fo(m) = fre + E -\tjy;"fr] # 3 pes max{ fi{z) - fi.:0}.

=1

g -

The estimate (3!) follows from here and from the estimates (12), {(13). The remain-
ing part nf the theorein can be proved in the similar way.

Fror: the conditions (14), (16) and the estimate (32), one can conclude that
limi—o supw,.(s) ll2 = 2pall = 0.
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